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The Thermal-Motion Correction for Bond Angles 
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Expressions for the thermal-motion correction of bond angles are derived by determining the mean angle. 
Thus the joint distribution of the three relevant nuclei is used in the harmonic approximation of the nuclear 
vibrations. To calculate the correction in practice, the coupling tensors among the three relevant atoms 
must be known, these being a characteristic feature of the joint distribution. Since the coupling tensors 
cannot be measured, they must be determined from simple models of motion or from the interatomic force 
constants. The model of rigid-body motions can be applied in many cases, and for this model it is shown 
that the angle correction can be calculated from the corrected bond lengths. Approximate expressions for 
upper and lower bounds of the angle correction are derived. 

1.  I n t r o d u c t i o n  

At the end of  a refinement, bond lengths and angles 
are calculated, as a rule, f rom the mean positions of  the 
atoms. It is known,  however,  that  a better assessment  
of  the bond lengths is given by the mean distances 
between the a toms and it is on their calculation that 
the bond-length correction is based (Busing & Levy, 
1964; Johnson,  1970; Scheringer, 1972). Similarly, we 
regard  the mean  angle as a better assessment  of  the 
bond angle when the joint distribution of  the three 
relevant a toms is taken into account .  Likewise, 
Busing & Levy (1964) consider the mean angle as a 
'sensible measure ' ,  but they find it difficult to derive 
the relevant expressions. Johnson  (1970) derived a 
correction formula  for the model of  rigid-body motions 
of  a molecule, but  we found that  his approach  cannot  
be applied to the general case. In this paper  we derive 
the bond-angle correction by calculating the mean 
angle f rom the joint  distribution of the three relevant 
atoms.  Thus we restrict ourselves to the harmonic  
approximat ion  of  the atomic motions.  

2 .  T h e  c a l c u l a t i o n  o f  t h e  m e a n  a n g l e  

We consider three a toms r - t - s  and denote the bond 
vectors rt, st and rs between the mean positions of  
the a toms  by a, b, and c respectively. Then e = a - b. 
Let the angle at t be tp, and let the instantaneous 
thermal  displacement  vectors of  the a toms from their 
mean positions be Ur, U s and u r For  an ins tantaneous 
thermal configuration we have 

a u = a + U r - -  U t ,  b u = b + u s - u t, 

e u = a u - b u = c + U r - -  U s .  (2.1) 

The subscript  u denotes the instantaneous interatomic 
vectors.  For  the difference between the ins tantaneous 
angle ~0 u and the angle tp, we can write 

tp u - (0 = arcsin(cos ~0 sin (0u - cos ¢Pu sin tp). (2.2) 

In the following we calculate the average (tpu - ~0) = 
(¢~)  - ~0 as a function of  the atomic displacement  
vectors u,, u s, u r We consider only first and second 
powers of  the displacements (harmonic  approximation).  
We apply the series expansion of  the arcsin function 
and, since the second-order  terms are zero, obtain 

~0~ - tp ~ cos ~o sin tp~ - cos ~o~ sin q~, (2.3) 

which corresponds to the approximat ion  ~0, -- tp _~ 
sin(~0u - ~0). For  cos ~0~ we write 

cos ~0, = ( a , .  b , ) / ( a ,  bu). (2.4) 

We put a,b,, = [ (a , .  a , ) (b , ,  b,)] 1/2, insert (2.1) into 
(2.4), multiply out all terms and obtain 

cos tp,, = cos ~0(1 + D) -v2 + (ab)- l (1  + D) -v2 G, 
(2.5) 

where 

G = a .  ( u  s - ut)  + b .  ( u  r - u t) + (Ur - -  Ut). (U s - -  Ut), 
D = Aa -2 + Bb -2 + AB(ab)  -2, (2.6) 
A = 2 a . ( U r -  ut) + l u r -  utl 2, 
B = 2b.  (u s - -  Ut) + l u s - -  U t l  2.  

To work with sin ~0 u, we put sin ~ou = (1 - cos 2 ~0~) 1/2. 
Moreover ,  a representat ion:  

(1 - cos 2 ¢pu) v2 = (1 - cos tp)v2(1 + X)l/2(1 + D) -v2 
(2.7) 

proves to be expedient. With (2.5) we find 

X = [D - 2 cos 0ffab) -1 G - (ab) -2 G2](sin ~0) -2 
- E(sin ~0) -2. (2.8) 
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(2.8) defines E. With these results, (2.3) becomes 

~0u-- tp = {cos ~o[(1 + X )  1 ' 2 -  1 ] - G ( a b )  -1} 
x (1 + D) -1/2 sin q~. (2.9) 

Now we expand the square-root expressions in (2.9) 
into the corresponding series up to second-order terms, 
multiply out all terms and obtain 

~0u - q~ = cos ~0(2 sin ~0) -1 E -- sin ~o(ab) -1 G 
- cos ~0(2 sin tp) -3 E 2 - cos ~0(4 sin q~)-i 
x [D 2 -- 2 cos ~o(ab) - 1 D G ]  + sin q~ (2ab) -1DG.  

(2.10) 

If we neglect third and higher-order terms in E z, we find 

E 2 ~_ D 2 -- 4 cos ~o(ab) - 1 D G  + (2 cos ~0 G)Z(ab) -2. 
(2.11) 

We insert (2.11) into (2.10), reorder the terms, and 
finally obtain 

~0 u -- ¢ = cos ~0(2 sin q~)-i D - (ab sin tp) -~ G 
- [(2 sin ~o) -3 + (4 sin ~0) -~] cos ~oD 2 (2.12) 
- (ab) -2 (sin ~o) -3 cos ~0 G2/2 
+ (2ab) -1 (sin ~0) -3 DG.  

If we insert D and G from (2.6) into (2.12), we would 
obtain ~o, - q~ as a function of the atomic displacements  
Ur, Us, U r We shall not write down this lengthy 
expression, but rather proceed to the thermal  average 
(~Pu) - ~0. With (2.6), the averages (A) ,  (B) ,  ( A B )  
and ( G )  will appear.  To express these averages by 
way of  the atomic displacements,  we introduce the 
vibration tensors Ur, Us, Ut of  the three atoms r, s, t 
respectively and the coupling tensors Urt, Ust, Urs, with 

U[gt=(U~rU~t); i , k =  l , 2 , 3 ;  U t r = U r ; ( 2 . 1 3 )  

(Scheringer, 1972). To shorten our description we use 
the symmetr ic  tensors Art, Ast, A,s, with 

Art = U r + U t - U,. t - Utr , (2.14) 

and the tensor 

P = (Ars--  A r t - -  Ast)(Zab) -1 
+ (Art  a -2 + Ast b-2~2 cos (p. (2.15) 

With (2.6) and (2 .12-15)  we finally obtain 

(Cpu) - ~0-- (sin ~0) -1 trace P - (sin ~o) -3 [a r Pa  a -2 
+ b r Pb b -2 --  2 COS (p a r Pb(ab)- l ]  

- (sin ~0) -1 {cos ~o[a r Art a a -4 + b r Ast b b -4] 
_ a r [ A n a  -2 + Astb -El b(ab)- l} .  (2.16) 

(2 .13-16)  are valid in a general metric. We can 
simplify (2.16) if we refer to a special Car tes ian 
coordinate system which is symmetr ic  to a and b. 
Let the Z axis be perpendicular  to the plane ab, 
the Y axis be the bisector of  the angle ~o, the positive 
Y axis point to side e, and the positive X axis to the 
atom s (Fig. 1). Then we have - -ax /a  = bx/b  = sin (tp/2), 
ay/a  = by/b = cos(q~/2) and (2.16) reduces to 

22 I 1 a - 2  (~0,) - ~0 = (sin ~0) -1 p33 + ½ sin ~0[ (A,t - Art ) 
22 11 + (Ast - Ast ) b -2] + cos ~o(A) 2 a -2 - A~ 2 b-2). (2.17) 

The first term in (2.17) refers only to out-of-plane 
motions;  the two other terms only to in-plane motions 
(i.e. motions for which the atoms vibrate only in the 
plane abe). For isotropic in-plane motions,  we have 

11 ___ A 2 2  11 22 12 12 
Ar t  rt, A st = A st,  Ar t  = A st = 0 ,  a n d  the t w o  

final terms in (2.17) vanish. In (2.16) the quadrat ic  and 
mixed forms represent only in-plane contributions.  

We can interpret the first term in (2.17), (sin cp) -1 p33, 
as a correction that can be calculated from the three 
sides that were corrected only for out-of-plane motions 
of  the relevant triangle. Let ~Pco~r be the angle that is 
obtained from the three corrected sides, and we have 

p 3 3  = c o s  ~o - c o s  ~Ocorr. (2.18) 

The proof  of  (2.18) is as follows. In the coordinate 
system of  (2.17) (Fig. 1), the side a, being corrected 
for out-of-plane motions,  is 

a¢orr=a + Ar3t3 (2a) - l ;  (2.19) 

the same is true for b and c (Scheringer, 1972, 
equations 3.1 and 3.6). We ignore all quadrat ic  terms 
of A ~3 A 33 and A 33, and obtain 

a2 + bE - cZ + A33rt + A33t - - A r  33 

cos ~0cor~ = 2[a + A3](Za) - l ] [b  + A3](Zb)-l]" (2.20) 

In the denominator  of (2.20) we extract the factor 
2ab, expand the remainder  into a series and obtain 
(2.18) in the linear terms of A 33, A st33 and A r3~. 

The factors of  (sin tp) -1 and (sin ~0) -3 in (2.16), and 
of  (sin q~)-i in (2.17) suggest that the correction will 
diverge for sin ~0 ~ 0. In truth, this is not the case, 
al though divergence m a y  occur in the first term of 
(2.17), because, for sin tp ~ 0, p33 cannot  be determined 
well enough experimentally.  The transit ion from (2.16) 
to (2.17) has shown that the divergence of  the in-plane 
contributions [terms with (sin ~0) - l  and (sin @ ) - 3  in 
(2.16)] vanishes with the choice of  a special coordinate 
system. For the external motions of a molecule 
(rigid-body motions), we shall show (3.6 below) that 
the first term of (2.17), (sin ~0) -1 p33, tends towards zero 
for sin ~o --, 0. For the internal motions,  we first state 
that the sides a, b, e no longer define a plane for 
sin ~0 = 0. Hence, in this case, any vibration of the 
three atoms, which are on a straight line, can be 
regarded as an in-plane motion for which no divergence 
occurs. With the example  of the linear tr iatomic 
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Fig. 1. Cartesian coordinate system in which (2.17), (2.18), (3.6), 
and (4.3) are valid. Z axis perpendicular to the plane abe. 



430 THE THERMAL-MOTION CORRECTION FOR BOND ANGLES 

molecule, which is known to remain linear on the 
thermal average, the vanishing of the divergence and 
the zero correction are obtained as follows: For the 
external vibrations, the correction is zero with (3.6); 
for the internal (in-plane) vibrations, the second term in 
(2.17) vanishes with sin ~0 = 0, and the third term with 
Air 2 = A l] = 0 since the molecular axis a represents 
a principal axis of the internal motions. 

With (2.17) and (2.18) the angle correction ((G) - q) 
consists of two parts: the first part can be obtained 
from the sides of the relevant triangle which have been 
corrected for out-of-plane motions, the second part 
arises from the anisotropic remainder of the in-plane 
motions. Obviously, it does not hold that the corrected 
angle can generally be calculated from those three 
sides of the relevant triangle that have been corrected 
for all types of motions. 

The main difficulty in the application of (2.16) and 
(2.17) consists of the fact that the coupling tensors 
Urt , Ust , Urs cannot be derived from diffraction data, 
and, thus, are usually unknown. For their calculation, 
five simple models of motion are at hand: complete 
in-phase motion, complete anti-phase motion, un- 
correlated motion, riding motion, and rigid-body 
motion (Scheringer, 1972). Only the model of rigid- 
body motions presents a useful approximation of 
reality, particularly at higher temperatures. The other 
four models will rarely correspond to the real situation, 
and even if they do this cannot be convincingly shown. 
Furthermore, for each of the three sides of the relevant 
triangle, a different model of motion must usually be 
applied (except for rigid-body motions); this implies a 
careful consideration of the actual situation. 

There is a possibility of calculating the coupling 
tensors, which is likely to produce the most accurate 
results but requires much effort. The motions of the 
molecule are separated (to a good approximation) 
into internal and external modes, and the coupling 
tensors are calculated separately for each type of 
motion. For the internal modes, they can be derived 
from the interatomic force constants which must be 
known from IR and Raman measurements; for the 
external modes, they will be determined from the 
model of rigid-body motions after the experimentally 
determined vibration tensors have been corrected for 
the contributions of the internal modes (Scheringer, 
1977). 

Generally, the corrected sides and angles of a 
triangle will not fit together into a closed triangle. 
Hence one has to decide for which quantities a correc- 
tion can reasonably be applied and for which it cannot. 
If, for example, the sides a and b represent chemical 
bonds but c only a distance, then the correction of 
a, b and the angle between a and b is reasonable, 
but not the correction of c. However, the situation is 
not always as clear cut, for example, for bonds and 
angles among atoms which belong to different mole- 
cules. 

3. Rigid-body motions 

The model of rigid-body motions signifies that the 
configuration of the molecule is the same in every 
thermal state. The coordinates of the atoms determined 
in the refinement do not represent this configuration, 
since the mean bond lengths are larger than the 
distances between the mean nuclear positions. The 
mean positions thus conceal the true configuration 
of the (rigid) molecule, and the purpose of the thermal- 
motion correction is to recover this configuration. Since 
it is uniquely determined by the bond lengths, it should 
be possible to gain the corrected bond angles from the 
corrected bond lengths. We shall show that this is the 
case, but we now derive the angle correction for the 
model of rigid-body motions from (2.16) and (2.17); 
this is the simpler procedure and yields a better insight 
into the characteristic features of the correction. 

The model of rigid-body motions is described by the 
tensors TLS, but only the libration tensor L is needed 
for the correction. This follows from 

Art = (V r - V/) L(V r -- Vt) r =- V a LV r (3.1) 

(Scheringer, 1972, equation 4.5), where the tensor 

(0 +  o+r) V r = Zr 0 (3.2) 
- Y r  X~ 

contains the coordinates of atom r in a Cartesian 
system. Since a r V a  = a × a = O, for rigid-body 
motions, all quadratic and mixed forms in (2.16) vanish 
and it reduces to 

(~0u) - ~0 = (sin ~0) -t trace P. (3.3) 

If one considers that, in a Cartesian coordinate system, 

trace (V a L V~ = a 2 trace L - a rL  a, (3.4) 

etc. ,  one finally obtains with (3.1-4) 

(~0u) - q3 = (sin q~)-~ [(a r L a + b r L b - c r L c) (2ab) -1 

cos (p(a r L a a -z + b r L b b-2)]. (3.5) 

Although V r of (3.2) is referred to a Cartesian co- 
ordinate system, (3.5) is valid in a general crystal 
metric (with a 2 = arga,  g = metric tensor). This follows 
from the fact that (3.5) is invariant with respect to a 
transformation of the base vectors. The simplest form 
of the correction is obtained in the special coordinate 
system of (2.17) (Fig. 1) 

((Pu) - q~ = 1 sin (p(L22- L~ I)" (3.6) 

Since the correction is dependent only upon the differ- 
ence L22 - L~t, the absolute magnitude of the librations 
is not of primary importance, but rather the extent of 
the anisotropy of L. Hence, an isotropic libration 
tensor gives a zero correction. Since L33 does not 
appear in (3.6), in-plane motions (which are described 



C. SCHERINGER 431 

by L33 in this coordinate system) do not contribute to 
the correction. Note that with (3.6) both positive and 
negative corrections can be obtained, since, for the 
different angles in the molecule, the special coordinate 
system of Fig. 1 has different orientations and, hence, 
the ascertainment of what L~ and L22 are changes with 
the angle. 

Now we show that the corrected angle which is 
obtained from (3.5) and (3.6) is equal to the angle 
which is obtained from the triangle of the three 
corrected sides. Since, for the rigid-body model, 
in-plane motions do not contribute to the angle correc- 
tion, it follows from § 2, that the corrected angle is 
obtained if it is calculated from the triangle of the 
three sides corrected for out-of-plane motions. How- 
ever, for the rigid-body model, in-plane motions give a 
non-zero contribution to the corrected sides. The 
corresponding calculation performed in the coordinate 
system of (3.6) (Fig. I) shows that all three sides are 
enlarged by multiplication by the same factor, (1 + 
L33/2), so that there is no effect of the in-plane motions 
on the angle. 

Johnson's (1970) formula (20) agrees with our 
results in the linear terms of the libration tensor L. 
In order to show this, the square-root expressions in 
Johnson's equation (20) must be expanded into a 
series and then reformulated, a procedure that is so 
cumbersome that we do not show it here. 

Finally, we give some numerical results of the angle 
correction for maleic anhydride (MAL) and 5-chloro- 
1,4-naphthoquinone (5CIN), where we had made use of 
our earlier TLS analysis of these compounds 
(Scheringer, 1973). For MAL, the corrections for the 
various angles lie between -0 .0182  and 0.0107; for 
5CIN, between -0 .1646  and 0.1580 °. Although the 
MAL molecules carry out much stronger librations 
in the crystal because of the loose packing, the angle 
corrections for MAL are smaller by about a factor of 
I0. This can be explained with (3.6): In the principal 
inertial system of MAL, L22 is nearly equal to L~, 
so that only a small angle correction is obtained. 

4. Lower and upper bounds 

Although the condition for calculating the bounds can 
be exactly formulated, an explicit expression for the 
bounds can only approximately be derived. The bounds 
are gained from the condition that the covariance 
matrix of the joint Gaussian distribution of the atomic 
displacements must be positive definite. For the three 
atoms r, s, t, the relevant part of the covariance 
matrix is a 9 × 9 diagonal block M, and the condition 
reads 

U r Urs Urt~ 
M =  U~,. U~ U~,],P(M)_>O, 2(M)_>0(4 .1)  

Ut,. Ut~ U t /  

for the 511 principal minors P(M) and 9 eigenvalues 
2(M). The bounds would be obtained by varying the 
coupling tensors within the limits set by (4.1), calcula- 
ting the correction for each set of tensors, and selecting 
the extreme values of the corrections so obtained. 
Obviously this procedure cannot be applied in practice 
with the 27 parameters given by the components of 
the coupling tensors. Without loss of generality we can 
reduce the number of parameters to five, if we express 
the condition (4.1) in the coordinate system of (2.17) 
(Fig. 1). Transformation to this system implies a con- 
gruence transformation of the covariance matrix by 
which the eigenvalues are changed but not the 
positive-definiteness. Still, five parameters are too 
many, and we confine ourselves to a calculation of the 
bounds with the approximation that the in-plane 
motions are isotropic. Then we are left with a 3 × 3 
covariance matrix of the three parameters U~ 3, U~ff, 
U~ 3. There are now three principal 2 × 2 minors and 
the 3 × 3 determinant. Since it is difficult algebraically 
to exploit the condition given by the 3 × 3 determinant, 
we make use only of the 2 x 2 principal minors, and 
thus obtain the explicit condition 

IUr3?[ '(  (U~r 3 U33) 1/2. (4.2) 

The same is true for uat a and Uas a. The bounds for the 
angle ~p are now obtained from (2.17) by adding and 
subtracting respectively the extremes given by (4.2) 
to a basic term for which the coupling tensors are zero, 
i.e. 

tp(bounds) = q~ + (K~ _+ K2)/sin ~0, 
K l = lCOS q~[Ur 33 + U3t3)a -~ + (U 33 + U]3)b-21 

-- U/3 (ab) - l ,  
K 2 = Icos tpa -2 - (ab)-~l(U] 3 U33) 1/2 + Icos tpb -2 

- (ab)-II(U~ 3 U]3) 1/2 + (ab)- l (U] 3 U33) 1/2. 

(4.3) 

The smaller the out-of-plane motions, the narrower the 
bounds are. Since Km is generally not zero, the bounds 
are not symmetrical with respect to tp. The bounds (4.3) 
are, on the one hand, too wide, since we did not use 
the condition given by the 3 × 3 determinant, and, on 
the other hand, too narrow, since we neglected aniso- 
tropic in-plane motions. Neglect of both will, at least 
partially, compensate for each other, so that (4.3) will 
be a reasonable approximation to the true bounds. 
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